Dies ist die archivierte Webseite der ASV. Aktuellere Informationen finden Sie unter temir.org und über die Suchfunktion auf uni-leipzig.de
ASV-Label
Login

16px-feed-icon Staff Diese Seite auf deutsch anzeigen

Tariq Yousef

Phone: +49-341-97-32315
Fax: +49-341-97-32299
Office: P 906
E-Mail: tariq@informatik.uni-leipzig.de

Address:
Abteilung Automatische Sprachverarbeitung
Institut für Informatik
Universität Leipzig
Augustusplatz 10
04109 Leipzig
Deutschland

Postal Address:
Tariq Yousef
Universität Leipzig
Institut für Informatik
PF 100920
04009 Leipzig
Deutschland

Publications

2021
  • [TYSJ21] Tariq Yousef and Stefan Jänicke: A Survey of Text Alignment Visualization. 2021
    tex icon BibTeX
  • [KKPRRY] Max Kölbl, Yuki Kyogoku, J. Nathanael Philipp, Michael Richter, Clemens Rietdorf, Tariq Yousef: The Semantic Level of Shannon Information: Are Highly Informative Words Good Keywords? A Study on German. In: Natural Language Processing in Artificial Intelligence—NLPinAI 2020, Springer , 2021
    tex icon BibTeX
  • [KöKyPhiRiRieYou] Max Kölbl, Yuki Kyogoku, J. Nathanael Philipp, Michael Richter, Clemens Rietdorf, Tariq Yousef: The Semantic Level of Shannon Information: Are Highly Informative Words Good Keywords? A Study on German. In: Natural Language Processing in Artificial Intelligence—NLPinAI 2020, Springer, 2021
    tex icon BibTeX
2020
  • [KöKyPhiRiRieYo] Max Kölbl, Yuki Kyogoku, Nathanael Philipp, Michael Richter, Clemens Rietdorf, and Tariq Yousef: Keyword extraction in German: Information-theory vs. deep learning . In: Proceedings of the 12th International Conference on Agents and Artificial Intelligence, Vol. 1, 459 - 464, 2020
    tex icon BibTeX
  • [RiYou4] Michael Richter and Tariq Yousef: Information from topic contexts: the prediction of aspectual coding of verbs in Russian. SIGTYP workshop at EMNLP 2020 (https://sigtyp.github.io/workshops/2020/papers/2.pdf), 2020
    tex icon BibTeX
2019
  • [RiYou] Michael Richter and Tariq Yousef: Predicting default and non-default aspectual coding: Impact and density of information features. Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019): Kaleidoscope Abstracts - German Society for Computational Linguistics & Language Technology, 2019
    tex icon BibTeX
  • [RiYou2] : Predicting default and non-default aspectual coding: Impact and density of information features. Proceedings of the 3rd Workshop on Natural Language for Artificial Intelligence co-located with the 18th International Conference of the Italian Association for Artificial Intelligence (AIIA 2019), 2019
    tex icon BibTeX