
A Multi-purpose Bayesian Model for
Word-Based Morphology

Maciej Janicki

University of Leipzig, Institute of Computer Science
Augustusplatz 10, 04109 Leipzig, Germany
janicki@informatik.uni-leipzig.de

Abstract. This paper introduces a probabilistic model of morphology
based on a word-based morphological theory. Morphology is understood
here as a system of rules that describe systematic correspondences be-
tween full word forms, without decomposing words into any smaller units.
The model is formulated in the Bayesian learning framework and can be
trained in both supervised and unsupervised setting. Evaluation is per-
formed on tasks of generating unseen words, lemmatization and inflected
form production.

Keywords: word-based morphology, machine learning, generative model,
inflection, lemmatization, lexicon expansion

1 Introduction

Morphological analysis is an indispensable element of the NLP pipeline for many
languages. Lemmatization or stemming is essential for virtually every semantic
processing and information retrieval task, whereas syntactic processing, like pars-
ing or chunking, usually requires Part-of-Speech tags and inflectional features,
e.g. case or gender. As a rich inflectional system is typically able to generate
hundreds of word forms for a single lemma, storing all those information in a
lexicon is highly inefficient. In addition to inflection, also derivational morphol-
ogy (especially compounding is some languages, e.g. German) often employs
highly productive and regularized processes, which can result in a potentially
unlimited number of lemmas. Therefore, systems for automatic morphological
processing are a topic of ongoing research.

Despite the importance of morphological analysis, up to now no clear task
definition has been established. The output of tools ranges from morpheme seg-
mentation and labeling to just inflectional analysis (lemma + tag). Although
the segmentation-based approach provides more detailed information, some non-
straightforward tasks are often left to the user, like distinguishing between inflec-
tional and derivational affixes, reconstructing the lemma or deriving the prop-
erties of the word from the properties of its morphemes. Also the handling of
non-concatenative morphological phenomena varies from tool to tool. The rea-
sons for those problems lie already in the underlying morphological theory, which
requires all word formation processes to be expressed in terms of morphemes.

Therefore, we introduce alternative theories, in particular the one called Whole
Word Morphology, in Sect. 3.

In addition to morphological analysis, there are also other NLP tasks, which
require the knowledge of a language’s morphology. Inflected form generation, un-
derstood as producing an inflected word form from a lemma and a set of desired
inflectional features, is needed in machine translation, among others. Another
morphology-related task is lexicon expansion, i.e. anticipating morphologically
motivated, but unseen words.

The goal of the present work is a generative probabilistic model of the lexi-
con, that accounts for morphological relations between words. It can be trained
either in an unsupervised or a supervised setting and, once trained, it is capa-
ble of solving various morphology-related tasks, including the above-mentioned.
Relying on a relational description of morphology, it does not suffer from the
limitations of the segmentation-based approaches.

The rest of this paper is structured as follows: Section 2 provides an overview
of the state-of-the-art in machine learning of morphology. Section 3 introduces
linguistic theories, on which the present work is based. The generative model is
described in Sect. 4 and the algorithms for training and applying it are sketched
in Sect. 5. Section 6 describes evaluation of the model on practical NLP tasks.
Topics for further research are described in Sect. 7. Section 8 summarizes the
opportunities and advantages of the present work.

2 Related Work

2.1 Morpheme Segmentation

Automatic morpheme segmentation, especially unsupervised, has been a topic of
active research for at least the last two decades [10]. The probably most known
state-of-the-art tool is Morfessor [23]. It is based on the Minimum Description
Length principle, which in this case is strongly connected to Bayesian learning.
Other approaches based on probabilistic models include the work of Poon et al.
[16] (log-linear models) and Can [5] (chap. 5, probabilistic hierarchical cluster-
ing).

Another group of approaches seeks to first group morphologically similar
words together. The words belonging to the same cluster are then aligned in
order to extract morphemes. Especially context similarity is typically used for
this purpose, sometimes along with ortographical similarity. This group includes
the approaches of Can [5] (chap. 4) and Kirschenbaum [12], among others.

Many further approaches have been submitted to MorphoChallenge [13],
which offered standarized task formulation and datasets for morpheme segmen-
tation. This yearly competition took place from 2005 to 2010.

Supervised learning of morphological segmentation is significantly less com-
mon. A method using Conditional Random Fields has been presented recently
by Ruokolainen et al. [19]. Moreover, some models developed for unsupervised
learning can also be trained in a supervised setting, like Morfessor [23] or the
log-linear model of Poon et al. [16].

2.2 Lemmatization and Learning Inflectional Paradigms

Another branch of research considering automatic learning of morphology targets
especially inflectional morphology. The task is then defined as either aligning an
inflected word form to its root or lemma, or clustering the inflected forms of
same lemma together. Many approaches exploit the high mutual dependency of
inflectional processes, expressed in paradigms, which is a characteristic feature
of inflection.

Yarowsky and Wicentowski [26], followed by Wicentowski [25], present a
model of inflection, which can account for some non-concatenative phenomena,
like root vowel change. The supervised approach employs a trie-based classifier,
whereas the unsupervised performs the matching between an inflected word form
and lemma based on a combination of various features: ortographical similar-
ity, context similarity and frequency ratio. The paradigm-oriented approaches
include Chan [6], who uses Latent Dirichlet Allocation to group suffixes into
paradigms, and Durrett and DeNero [8]. Unsupervised clustering of inflected
word forms into lexemes has been approached by Janicki [11].

2.3 Tagging Unknown Words

A slightly different approach to morphological analysis is found in handling un-
known words in the task of stochastic PoS-tagging. In this case, the goal is to
predict the tag and sometimes the lemma of an unknown word in a given context.
The tagging is thus token-based, rather than type-based. In addition to context
features, which are the main component of such taggers, morphological features
like prefix and suffix n-grams are sometimes incorporated in order to improve
the tagging. The examples of such approaches include Mikheev [14], Tseng et al.
[22] and Chrupa la et al. [7], among others.

2.4 Lexicon Expansion

Compared to the above topics, the prediction of morphologically motivated un-
seen words is relatively little explored. Rasooli et al. [18] have shown in a recent
paper, how the segmentation produced by Morfessor can be used for generation
of new words. Their approach is to generate all possible sequences of morphemes
with a finite-state automaton and to apply additional reranking steps based on
letter trigram probabilities. On the other hand, Neuvel and Fulop [15] define the
whole task of morphology learning as learning to produce new words using mor-
phological mechanisms. The approach is inspired by the theory of Whole Word
Morphology [9] and bears many similarities to the present work. However, it
does not use probability or any kind of scoring, the discovered rules are applied
wherever possible, which may lead to overgeneration, especially when learning
from noisy data.

3 Word-Based Morphology

The notion of word-based morphology has been introduced by Aronoff [2] with
the claim that “all regular word-formation processes are word-based”, i.e. they
apply to whole existing words, rather than some abstract structural elements.
While Aronoff only took derivational morphology into account, the claim was
further extended by Anderson [1]. In the latter theory, both inflection and deriva-
tion consists of word-formation rules, which operate on stems (defined as “word
minus inflectional material”) without creating any internal word structure. The
difference is that inflectional rules derive surface words out of stems, while deriva-
tional rules derive new stems.

A theory that rejects any abstract elements of word structure, called Whole
Word Morphology (henceforth WWM), has been proposed by Ford et al. [9]. A lot
of criticism is devoted to the notion of “morpheme” there: first of all, it does not
account for non-concatenative morphological phenomena. Also, the definition of
morpheme as “the minimal element of language having a meaning or function” is
troublesome, since some units participating in word-formation processes do not
have a meaning on their own, while some functions are realized not by addition,
but rather by absence or even truncation of phonological material. An example
would be French adjective inflection, where the masculine form is formed from
the feminine by truncation of the last consonant. Finally, the distinction between
inflection and derivation is rejected as unmotivated.

In WWM, the minimal meaningful elements of language are words them-
selves. Morphology, on the other hand, describes the frequently recurring formal
similarity patterns between words in terms of rules, called morphological strate-
gies. Those rules always relate full lexical representations (phonological, syntactic
and semantic) of two words to each other and are not decomposable. An example
of a rule for English plural formation would be /X/N.Sg ↔ /Xs/N.Pl. X is here
a variable element, that can be instantiated with any string of phonemes. The
two-sided arrow indicates, that the rule is bidirectional: no direction is privi-
leged and no word is said to be morphologically “more complex” than the other.
The atomicity of the rule means that no direct link is established between the
-s-ending and the Pl feature. In other words, there is no “plural morpheme”,
there is just a systematic correspondence between many plural nouns and their
singular counterparts. While such interpretation may seem awkward in this case,
it allows to treat all morphological phenomena uniformly, including the above
mentioned non-concatenative and truncation cases, among others.

Finally, WWM does not distinguish “compounds” as words derived from
more than one other word. It is pointed out, that only one part is always respon-
sible for the base meaning and grammatical properties of a compound, while the
other part is merely an “affix”, the similarity of which to an existing word being
irrelevant for the morphology. Compounds can thus also be explained with regu-
lar morphological strategies: for example the German word Arbeitsmarkt is linked
to Markt via the rule: /X/N ↔ /arbeitsX/N. Doubtful cases between derivation
and compounding, like the German rule /X/Adj.Pred ↔ /Xerweise/Adv, speak
in favour of this unification.

4 The Model

4.1 Lexicon as Directed Graph

The model of morphology introduced in this paper adopts many of the ideas from
the WWM theory. The morphological structure of a language is understood as a
graph of words, with morphological rules as edges. However, the bidirectionality
of the rules is not preserved, because it would lead to many redundant edges.
Instead, every word can only be derived from a single base word, i.e. every node
can have at most one ingoing edge.

machen

machst

macht

machte machtest

machbar machbaren

machbare

Fig. 1. A sample tree from a German lexicon.

Figure 1 presents a sample graph for German lemmas machen ‘to do’ and
machbar ‘feasible’ with a couple of inflected forms. Note that if we used bidirec-
tional rules, an edge would have to be drawn between every pair of the shown
words, also pairs like (machtest, machbaren). Such a multitude of redundant
rules can hardly correspond to a language speaker’s competence. Therefore, we
are rather looking for a spanning tree of the full morphological graph, which
contains for each word a single base word, from which it is “really” derived.

In Fig. 1, the edges are drawn according to the usual morphological the-
ory: inflected forms are derived from lemmas (possibly through other inflected
forms, like machtest from the “imperfect stem” machte), while derivational rules
derive “more complex” lemmas from “simpler” ones. Such behavior might be de-
sirable for solving some specific tasks, like lemmatization, and can be controlled
by training data and model parameters. However, from the point of view of
model architecture, any trees of words are allowed, regardless of whether they
make sense for the linguistic theory. Especially in the unsupervised learning task,
where the graph structure emerges from the data through optimization, the reg-
ularities in word shape can be captured in quite different ways than traditional
grammatical description (see also introduction to sec. 6).

4.2 Model Formulation

A Bayesian model with parameter θ consists of two probability distributions:
the prior probability P (θ), which expresses a-priori beliefs about the possible
parameter values, and the likelihood function P (D|θ), which expresses the com-
patibility of the data D with the model parametrized by θ. The goal of the
learning task is to find the most likely model given the observed data, i.e. the
parameter value θ∗ which maximizes the posterior probability P (θ|D). The latter
can be transformed using the Bayes’ theorem:

θ∗ = arg max
θ
P (θ|D) = arg max

θ

P (θ) · P (D|θ)
P (D)

= arg max
θ
P (θ) · P (D|θ) (1)

The last equality follows because P (D) does not depend on θ. Instead of com-
puting the likelihood directly, the log-likelihood is often used, because it is easier
to manipulate numerically. As logarithm is an increasing function, the maxi-
mization of those two is equivalent.

In our model of morphology, the observed data is the lexicon L: a directed
acyclic graph, in which every node has at most one ingoing edge. The nodes of
the lexicon contain words, while the edges correspond to morphological rules.
The parameter of the model is the set R of morphological rules. In the following,
we will define the distributions P (R) and P (L|R).

In order to define P (L|R), we will decompose L into layers: L0, L1, . . . as
follows: let L0 contain all the nodes, that have no ingoing edge. Such nodes will
be called roots.1 Then, each Li+1 contains the nodes, that are derived from a node
from Li. Let rt be a probability distribution (called root probability distribution)
over the set of all strings using letters from the target language’s alphabet. For
example, rt can be based on letter frequencies. Then we define:

P (L0) := P (|L0|) · |L0|! ·
∏
w∈L0

rt(w) (2)

First, we draw the length of L0 from some distribution. Then, each of the ele-
ments of L0 is drawn independently from the root distribution. As the ordering
of the elements is irrelevant, the result is multiplied by the number of possible
orderings. Note that P (L0) does not depend on R and that rt is not a model
parameter (i.e. it is fixed). We can get rid of the factorial term by using Poisson2

distribution with parameter λL for P (|L0|), which yields:

P (L0) := e−λLλ
|L0|
L

∏
w∈L0

rt(w) (3)

1 The notion of root used here has nothing to do with the definition typically used in
morphology. It is meant as a root of a derivational tree, like the one shown in Fig. 1,
which principally can be any word.

2 The distribution of set length has negligible influence on the behavior of the model
and is included only for formal completeness. Poisson distribution is chosen because
of mathematical simplicity.

Next, we will define the probability P (Li+1|Li, R) of deriving the layer Li+1

from Li using the rules from set R. For each rule r, let πr denote a probability,
called productivity of r. Further, let r(w) denote the (possibly empty) set of
words resulting from applying the rule r to w.3 Finally, let EL denote the set of
edges of L. Then:

P (Li+1|Li, R) :=
∏
w∈Li

∏
r∈R

∏
w′∈r(w)

{
πr if (w,w′) ∈ EL
1− πr if (w,w′) /∈ EL

(4)

In other words, for each word from the layer Li, each rule can apply with its
inherent probability πr. The latter corresponds to the definition of productivity
mentioned by Aronoff [2, p. 36]. The lexicon also contains information about
cases where a rule does not apply, the probability of which equals 1− πr.

Finally, we can define the complete likelihood function:

P (L|R) := P (L0) ·
∞∏
i=0

P (Li+1|Li, R) (5)

The product going to infinity can be justified as follows: once there is a Lk = ∅,
then all further layers must also be empty and (4) yields P (∅|∅, R) = 1.

The rule set prior P (R) is defined similarly to P (L0): first, we introduce a
distribution P (r) over single rules. For this purpose, we decompose a rule into a
sequence of elementary edit operations (insertion or deletion of a character). We
also introduce a third operation COPY (c), which leaves an arbitrary number of
characters unchanged. For example, the German rule /Xen/V.Inf → /geXt/V.PP

would be expressed as the sequence:

(i(’g’), i(’e’), c, d(’e’), d(’n’), i(’t’), d(V.Inf), i(V.PP))

The distribution P (r) is obtained by assigning (fixed) weights to each of the
three operations and taking a probability distribution over letters and tags (e.g.
according to their corpus frequency).

The next step is specifying a prior distribution for rule productivities. It
is easy to check that the rule frequency in the lexicon follows a binomial dis-
tribution. Therefore, we use a standard non-informative prior Beta(1, 1) for
productivity. Finally, as we did with L0, also here we use a Poisson distribution
with parameter λR for |R|. Then we obtain:

P (R) := e−λRλ
|R|
R

∏
r∈R

P (r)P (πr) (6)

3 In our formalism, rules are functions mapping words to sets of words. The set is
empty if the constraints on the left-hand side of the rule are not met. Otherwise,
typically a single word is produced, but cases with more than one result are also
possible.

4.3 Extension with Features

The model sketched above can be further extended to include arbitrary features,
like word frequency, semantic vectors, inflectional classes etc. In this case, the
graph nodes contain feature vectors and the rules are conditional distributions
on feature values.

As an example, consider the PoS-tag of a word. In the model presented in the
previous section, it was treated like a part of the word’s string representation.
Instead, we can define it as a separate feature t. Then, the nodes of the lexicon
are pairs (w, t), while the rules additionally contain a probability distribution
(called transformational distribution) τr(t

′|t) of the tag of the resulting word,
given the tag of the base word. For the above-mentioned rule for German past
participle formation, τr(t

′|V.Inf) would equal 1 for t′ = V.PP and 0 otherwise.
For t 6= V.Inf, τr(t

′|t) can be left undefined, because the rule does not produce
any results.

Equations (3), (4) and (6) become then:

P (L0) := e−λLλ
|L0|
L

∏
(w,t)∈L0

rt(w)P (t|w) (7)

P (Li+1|Li, R) :=
∏

(w,t)∈Li

∏
r∈R

∏
w′∈r(w)

{
πrτr(t

′|t) if ∃t′((w, t), (w′, t′)) ∈ EL
1− πr otherwise

(8)

P (R) := e−λRλ
|R|
R

∏
r∈R

P (r)P (πr)P (τr) (9)

In addition, we need the distribution on root tags (possibly conditioned on the
string form of the word) P (t|w) and the prior distribution on τ , P (τ). In this
example, the former can just be based on the frequencies of the tags in training
data, while the latter can be a uniform distribution on all possible tag pairs (only
degenerate τ , that equal 1 for exactly one resulting tag, are taken into account).

While the above example may look overcomplicated, this formalism allows us
to incorporate a large variety of features into the model. Let us consider another

example: the frequency class of a word, defined as fw = blog2
maxw′∈L freq(w

′)

freq(w) c,
where freq is the corpus frequency. There are reasons to assume, that mor-
phological rules add a roughly constant factor to the word’s frequency class.
Consider Fig. 2, which shows the differences in frequency class between German
word pairs conforming to the rule /X/→ /Xs/, in the absence of PoS-tags. The
histogram forms a bell-shaped curve with mean approximately 2. Moreover, the
cases near the mean correspond to regular morphological phenomena, while the
tails contain mostly pairs of unrelated words, which happen to fit the pattern,
like hau, the imperative of hauen (‘to hit’, ‘to chop’) and Haus ‘house’. Assum-
ing a Gaussian distribution of this quantity allows us to filter out much of the
noise. Thus, we introduce a feature f corresponding to the frequency class of
a word. Its corresponding transformational distribution φr(f

′|f) is a Gaussian
distribution with some mean µφr

(being a model parameter for each rule) and
unit variance. The priors P (f |w) and P (µφ) can be skipped at this moment for

the sake of simplicity, since they have little influence on the likelihood function.
Note that the frequency classes are integers, so φr(f

′|f) is in fact an integral of
the Gaussian distribution on a unit interval. The means µφ are also limited to
integers so that the prior can assign non-zero probabilities to concrete values.

−10 −5 0 5 10 15

0

0.2

0.4

kann:kanns

künstler:künstlers kurze:kurzes
spur:spursgeiste:geistes

hau:haus

f2 − f1

P
ro

b
a
b
il
it

y
d
en

si
ty

Fig. 2. Difference of frequency classes of various pairs following the rule /X/ → /Xs/.
The dashed line is Gaussian probability density with µ = 2 and σ2 = 1.

4.4 Local Properties

In this section, we will present some local properties of the model based on the
global formulae introduced above. For the sake of simplicity, we will use the basic
model without features.

Edge Score. Let’s consider the contribution to the overall log-likelihood of draw-
ing a new edge w1

r→ w2, compared to a situation, where w2 is a root. If L′

denotes the lexicon with the considered edge, and L the lexicon without it, the
score is given by:

lnP (L′|R)− lnP (L|R) = ln
πr

(1− πr)λLrt(w2)
(10)

Note that this score depends on nothing else than w2 and πr. This fact will play
an important role in the unsupervised training algorithm.

Rule Contribution. Let νr denote the frequency of rule r in lexicon and µr the
number of words, to which r could be applied, but is not. The contribution of
r, together with all its corresponding edges, to the overall log-likelihood is given
by:

− ln(λRP (r)πνrr (1− πr)µr) = − lnλR − lnP (r)− νr lnπr − µr ln(1− πr) (11)

Using the above formula, we can also easily derive the optimal productivity as:

π∗r =
νr

νr + µr
(12)

Word Cost. When a new word is inserted into the lexicon, it can either be
attached to an existing node, or left as a root.4 The cost of insertion is thus:

cost(w) = −max(ln rt(w), max
r∈R

L∩r−1(w)6=∅

ln
πr

1− πr
) (13)

As the contribution to the log-likelihood is typically negative, it is plausible to
call the opposite of this quantity the “cost”.

Back-Formation. In some cases, adding a word as a root may seem implausi-
ble even though we do not see any possible base word. Let’s consider the case
of inserting understandableAdj, when understandV is not contained in the lexi-
con, but the rule /X/V → /Xable/Adj is known and highly productive. If the
root distribution rt has bias towards shorter words (which is the case for exam-
ple for N -gram-based distributions), it may turn out, that inserting understand
and an edge understand → understandable may yield lower cost than inserting
understandable directly as a root. The model is thus capable of back-formation.

5 Algorithms

5.1 Preprocessing

In both unsupervised and supervised setting, the input data must be adjusted
to the right format, before the actual training can start. The training data for
supervised learning consist of a list of word pairs, for which the second word is
known to be derived from the first. In order to convert it to a proper lexicon, a
rule has to be extracted from each pair. This is done with the same algorithm
as in unsupervised learning (see below).

The unsupervised learning task requires a couple more preprocessing steps.
The training data consist of a list of words, with optional features (like frequency
class or PoS-tag). First of all, pairs of words with sufficient string similarity are
found using the FastSS algorithm [3]. The algorithm is modified in order to find
morphologically related pairs: a difference of up to 5 characters at the beginning
and at the end of words is allowed, as well as up to 3 characters in a single slot
inside the word. While those constants can be configured arbitrarily, this setting
fits to morphological rules of many languages.

Once the pairs of similar words are found, a rule is extracted from each pair.
For this purpose, the Wagner-Fischer algorithm for computing string edit dis-
tance [24] is used to compute the optimal alignment between words. The align-
ment is then transformed into prefix, suffix and internal change, plus optionally
PoS-tag change if tags are used.

4 For simplicity, it is assumed here, that the newly inserted word does not overtake
any child nodes from other words.

Finally, the frequency of rules is counted and only the top-N frequent rules
are preserved. This filtering step has little influence on the correctness of the
results and is done for performance reasons: most extracted rules are accidental
similarities between unrelated words, which typically have low frequency. Filter-
ing them out speeds up the further processing greatly. By setting N to 10000
we can be almost sure, that all real morphological rules are preserved.

5.2 Training

Problem Formulation. In the supervised learning task, we now have a full lexicon
available. It remains to find a plausible rule set, which can be done in a single
Maximum Likelihood estimation step. In the unsupervised setting, the graph
resulting from the preprocessing steps contains all possible edges, but the subset
of those, that corresponds to the lexicon structure, still has to be found. In this
case, we treat the lexicon structure as a hidden variable and apply the “hard
Expectation-Maximization” algorithm, as described by Samdani et al. [20], which
consists of alternating Maximum Likelihood estimations of lexicon given rule set
and rule set given lexicon.

Rule Optimization. Before the ML estimation steps are carried out, an additional
step is performed in both unsupervised and supervised task. At the point of
rule extraction, the rules were made as general as possible: only the segments
that change are recorded. For example, the rule extracted from the German
pair (achten, achtung) would be /XeY/→ /XuY g/, although the more specific
pattern /Xen/→ /Xung/ is definitely more appropriate. The current step fixes
this problem with the help of likelihood: for each pair of words (w1, w2) following
a rule r, we extract all possible rules that describe the transformation from w1 to
w2. Then we calculate the contribution of each rule to the overall log-likelihood
using (11). Finally, we choose the set of rules that minimizes the costs.

In the above example, the original rule r : /XeY/→ /XuY g/ is splitted into
r1 : /Xen/ → /Xung/ and r2 : /XeY/ → /XuY g/. r1 covers the most cases,
so νr1 ≈ νr, but µr1 < µr, because the constraint on the left side is stronger.
Thus, the last term of (11) is weakened. Also, πr1 > πr, which decreases the cost
further. The remaining cases, like for example the accidental similarity (ber,
burg)5, are covered by r2. Here, µr2 = µr + νr1 , but νr2 and πr2 are very small.
In conclusion, the following inequality is fulfilled:

P (r)πνrr (1− πr)µr < λRP (r1)π
νr1
r1 (1− πr1)µr1P (r2)π

νr2
r2 (1− πr2)µr2 (14)

This justifies the splitting of r into r1 and r2. In unsupervised learning, this step
is performed only once, before running the EM algorithm.

5 Although ber is not a valid German word, it may happen to occur in the data, for
example as an abbreviation or a foreign word.

Estimating Rules Given Lexicon. In this step, the productivity of each rule is set
to the optimal value given by (12). Once it falls to 0, the rule is deleted. If the
model uses frequency class as a feature, also the means µφr have to be estimated
for each rule. This is done by setting each mean to the rounded average difference
of frequency classes for the pairs of words following the rule.

Estimating Lexicon Given Rules. While searching for an optimal lexicon, we
consider the edges obtained in the preprocessing steps and look for a subset of
those, in which every node has at most one ingoing edge. This problem is known
as optimal branching of a graph and can be solved with Chu-Liu-Edmonds’
algorithm [21]. As weight of the edges, we use the contribution of an edge to the
log-likelihood given by (10). The property, that this weight depends on nothing
else than the pair of nodes between which the edge is drawn, is crucial at this
point. It allows the weights to stay constant as the structure of the graph is
manipulated.

Checking Rules. This additional step, performed after each iteration of the EM
algorithm in unsupervised training, allows for easier elimination of “weak rules”.
The contribution of each rule to the log-likelihood (the “cost” of the rule), given
by (11), is compared to the “gain”, which is achieved by using this rule to derive
words. In order to compute the gain of rule r, for each word w derived by r, we
count the minimum cost of deriving w by another rule, or the cost of introducing
w as a root if no other rule is possible. The sum of those costs constitutes the
gain of r:

gain(r) := −
∑
w:

r→w

max(ln rt(w), max
r′∈R\{r}
w∈rng(r′)

ln
πr′

1− πr′
) (15)

The notation
r→ w means summing over all w that are derived by r in the

present lexicon and rng(r′) means the set of words that can be derived by r′.
Thus, words that contribute a lot to the gain of r are those, for which r has no
good replacement. The rules, for which the cost exceeds the gain, are deleted.

5.3 Lexicon Search

Word Insertion. An insertion of a new word into the lexicon requires finding a
position, at which the optimal cost, given by (13), is achieved. This is done by
iterating over rules, in the order of decreasing productivity. For each rule r, it
is assumed that the word w in consideration is derived by r. The corresponding
base word w′ is computed. If w′ is not contained in the lexicon, back-formation
is attempted, i.e. the recursively computed cost of inserting w′ into the lexicon
is added. The algorithm terminates if some rule r would yield bigger costs,
than the previously considered rules, even in the “optimistic case”, i.e. if the
postulated base word was found in the lexicon. As the rules are sorted according
to decreasing productivity, further search would yield even bigger costs. In this
case, the best solution found so far is returned. The depth of the recursion of

back-formation is typically restricted to some small number (like 1 or 2) for
performance reasons.

If the model uses PoS-tags as a feature and the new word w is given without
tag, this algorithm is also able to find the optimal tag. In this case, each time w
is matched against a rule r, the tag standing on the right-hand side of r is used.

Lexicon Expansion. This algorithm finds morphologically motivated, but un-
known words, which can be inserted into the lexicon with low cost. As the pre-
vious algorithm, the present one also considers rules in the order of decreasing
productivity. For each rule r, words in lexicon are found, to which it could be
applied, but is not. The results of applying r to those words are added to the list
of newly generated words. Note that in this case, the cost of the newly generated
word depends only on the productivity of the rule, since the base word is always
contained in the lexicon. The algorithm terminates as the cost achieves some
predefined threshold.

Note that the cost of adding a word may be negative (πr

1−πr
> 1). In this

case, the word is so strongly motivated, that the lexicon containing it is more
likely than the one without it. Thus, even setting the cost threshold to 0 can
result in generating new words.

6 Experiments

A full morphological analysis under the presented model would mean producing
a graph akin to the one shown in Fig. 1, or equivalently, providing a derivation
sequence for each word. This task is not yet approached. On one hand, evalua-
tion and supervised learning would be difficult because of the lack of appropriate
datasets (to our knowledge). On the other hand, first experiments with unsu-
pervised learning produced results, that are not directly usable. For example,
German prefixed verbs, like erheben, beheben, anheben etc. are analyzed as a
“chain” of derivations (erheben → beheben → anheben etc.) instead of all being
derived directly from a common base heben. This behaviour is understandable:
a rule like /erX/ → /beX/ has much higher productivity than /X/ → /beX/,
because the former applies to a more restricted set of words. Also, no property
of the model punishes long chains. Such analysis might even correspond to the
speaker’s competence, since the knowledge, that a stem occurs with prefix er-
makes its occurrence with prefix be- more likely and the whole process could also
take place in the absence of heben. However, a method of obtaining a grammati-
cally meaningful and practically usable analysis in the unsupervised setting still
has to be found.

Nevertheless, some more specific tasks have been approached with good re-
sults, demonstrating the usefulness of the model. The following sections describe
its performance in predicting unseen words, lemmatization and inflected form
generation.

6.1 Lexicon Expansion

This experiment measures the capability of the model to generate new words
using morphological rules. The model has been trained in the unsupervised set-
ting on top-50k untagged wordlists obtained from the corpora of the Wortschatz
Project6 for German and Polish. All words have been lowercased and words con-
taining characters from outside the language’s alphabet were removed. Then, the
lexicon expansion algorithm is used with the cost threshold of 5.0. For each lan-
guage, two models were trained: with and without frequency class as a feature.
The root distribution rt(·) is based on letter unigrams.

The precision of the results has been evaluated by matching them against
lexical resources: the list of inflected words of the Dictionary of the Polish Lan-
guage7 and the German morphological analyzer Morphisto [27], respectively. An
appropriate recall measure seems impossible to calculate: we would need to know
all words, that can be predicted given the input. Instead, we plot the precision
against the number of words generated.

The results are shown in Fig. 3. For both languages, the benefit of using
frequency class as a feature is clearly visible, especially when generating a small
number of words. At 50k words – the amount that corresponds to doubling the
size of the lexicon – the precision is still around 60%. It is important to point
out, that those results may be slightly lowered, because the resources used for
evaluation are not perfect. In particular, the worse results on German dataset
can be due to the errors of Morphisto, which fails to recognize some existing
words, e.g. Tschetschene or korrelieren.

0 0.2 0.4 0.6 0.8 1

·105

40

60

80

Words generated

P
re

ci
si

o
n

(%
)

Polish (freq.)

Polish (no freq.)

German (freq.)

German (no freq.)

Fig. 3. Results of the unsupervised lexicon expansion task.

6 http://corpora.uni-leipzig.de
7 http://sjp.pl/slownik/odmiany/

6.2 Lemmatization and Tagging

The model can also be used for inflectional analysis of unknown words. In this
case, the lexicon is a bipartite graph: the L0 layer contains lemmas, and L1

contains inflected forms. The analysis of a new word is computed by the word
insertion algorithm described in Sect. 5.3. For the evaluation, we used wordlists
extracted from the following tagged corpora: TIGER [4] for German and KIPI-
PAN [17] for Polish. Only open lexical classes (nouns, verbs, adjectives and ad-
verbs) were used. The only preprocessing was removing circular lemmatizations,
e.g. between Aufsichtsratsvorsitzende and Aufsichtsratsvorsitzender in TIGER,
which are obvious errors. In the supervised learning task, both wordlists have
been divided into a training set of around 30k words and a testing set of around
10k words. Both frequency class and a full inflectional tag (containing informa-
tion like case, number, gender etc. in addition to the part of speech) were used
as features. The root distribution rt(·) is based on letter trigrams and the tag
distribution P (t|w) is conditioned on the last three letters of the word. Such
choices account for some morphological knowledge, which improves generating
unknown lemmas through back-formation.

In the unsupervised learning task, the input data are a list of inflected forms
and a (separate) list of lemmas. The unsupervised training algorithm has been
slightly modified to incorporate the knowledge of the list of lemmas: after the
full graph is generated in the preprocessing step, it is filtered so that only edges
connecting a lemma to an inflected form are left.

For each language and each learning task (unsupervised/supervised), four
experiments have been conducted, depending on two parameters. The Lem pa-
rameter set to ‘+’ means, that all necessary lemmas are known in advance, while
‘–’ means, that only lemmas, that are contained in the training data, are known.
In the latter case, the missing lemmas have to be generated using back-formation.
The Tags parameter states whether the tag of the analyzed word is known in
advance.

Baselines. The comparison of the evaluation results to other approaches is diffi-
cult, because the results depend greatly on the datasets used and the details of
task formulation. Instead, we use simple ad-hoc approaches as baselines for com-
parison. In the unsupervised task, each inflected form is matched to the nearest
lemma in terms of string edit distance. Finding the tag of the analyzed word is
not attempted. For the supervised setting, a maximum-entropy classifier imple-
mented by the LogisticRegression class of the Python module scikit-learn

is trained. As features, prefixes and suffixes of length from 1 to 3 characters are
used, along with the tag, provided that Tags parameter is set. The classifier
outputs the postulated lemmatizing rule (an idea borrowed from [7]).

Results. Table 1 shows results for the unsupervised task. The three results given
for each experiment correspond to the number of words, that were correctly
lemmatized, correctly tagged, and both. The string edit distance-based base-
line is outperformed in all experiments. Especially the discrepancy between the

baseline and the model in the case, where not all lemmas are known in advance,
shows, that the model is successful in generating unknown lemmas through back-
formation. The performance of tag guessing is rather poor. This is not surprising,
because the correct tagging often requires knowledge of the context and should
be token-based, rather than type-based. However, the model could be used as a
lexical predictor for a stochastic tagger.

The results for the supervised task are given in Table 2. Also here the baseline
is clearly outperformed. The top-3 experiments for both languages display very
good lemmatization correctness of around 90%, which means, that only the
simultaneous absence of tags and lemmas poses a major problem for the model,
while absence of only one of those is handled well. The baseline classifier on
the other hand displays a sharp drop of performance in the absence of tags and
cannot benefit from knowing the lemmas in advance (its results do not depend
on Lem parameter at all).

Data Results Baseline

Language Lem Tags Lem Tags Lem+Tags Lem Tags Lem+Tags

German

+ + 93% 100% 93% 84% – –
+ – 80% 46% 45% 76% – –
– + 76% 100% 76% 44% – –
– – 61% 34% 28% 43% – –

Polish

+ + 84% 100% 84% 80% – –
+ – 80% 61% 59% 67% – –
– + 80% 100% 80% 41% – –
– – 79% 61% 55% 40% – –

Table 1. Results for unsupervised lemmatization and tagging.

Data Results Baseline

Language Lem Tags Lem Tags Lem+Tags Lem Tags Lem+Tags

German

+ + 97% 100% 97% 89% 97% 89%
+ – 92% 38% 38% 19% 20% 19%
– + 90% 100% 90% 89% 97% 89%
– – 57% 20% 19% 19% 20% 19%

Polish

+ + 94% 100% 94% 83% 94% 83%
+ – 93% 56% 56% 33% 36% 33%
– + 88% 100% 88% 83% 94% 83%
– – 68% 40% 38% 33% 36% 33%

Table 2. Results for supervised lemmatization and tagging.

6.3 Inflected Form Generation

Another experiment concerning inflectional morphology is generating an in-
flected word form given the lemma and the tag of the target form. For this
purpose, the supervised models and datasets from the previous section were
used. The baseline is a similar classifier as in the previous experiments: it also
uses prefixes and suffixes of length from 1 to 3 as features, in addition to the
lemma tag and the target tag. The resulting class is the rule that produces the
inflected form. The results are given in Table 3. The baseline is slightly outper-
formed by our model.

Language Result Baseline

German 84% 83%
Polish 86% 84%

Table 3. Results for supervised inflected form generation.

7 Further work

Compounds. Conforming to the WWM theory, the model treats compound-
ing rules as simple derivational rules, with one of the parts fixed. However, a
generalization which would allow to create new compounds, in which neither
part has previously been seen as a part of a compound, would be desirable. It
is planned to introduce “meta-rules” (or “second-order rules”) into the model:
a kind of rules that would apply to words and produce rules. For example, a
meta-rule /X/ → (/Y/ → /XsY/) would apply to the word Arbeit to create
/Y/ → /arbeitsY/, which could be futher applied to Markt to derive Arbeits-
markt. In this fashion, the analysis of compounding postulated by WWM would
be maintained and the productivity of this phenomenon would be fully accounted
for. However, a serious unsolved problem is that it would make the rule set de-
pend on the lexicon, which means, that the dependency between those two would
become circular.

Learning Paradigms. The notion of paradigm could be understood in our model
as “a group of rules that frequently occur together”. Those could be incorpo-
rated into the model by using a paradigm ID in the same way as a PoS tag.
Knowing the paradigm IDs of words would greatly increase the productivity of
rules by decreasing the µr-values (see (12)), because each rule could only apply
to words following a certain paradigm. The paradigm IDs could thus be assigned
automatically, in a fashion that maximizes the log-likelihood.

Segmentation. Although not all morphological phenomena can be described in
terms of morphemes, word segmentation remains a useful description in many
cases. The relational description produced by our model identifies groups of
related words. Such groups can be used for segmentation into morphemes, for
example with multiple sequence alignment methods explored by Kirschenbaum
[12]. This additional output would make it easier to compare our model to other
tools and help make it available for users, who are not convinced by the WWM
theory.

Token-Based Tagging. As pointed out in Sect. 6.2, finding the right tag of an
unknown word requires knowledge of the context, in addition to morphological
criteria. Therefore, integrating the model with a stochastic tagger (e.g. HMM-
based) will be attempted.

8 Conclusion

We have presented a probabilistic model based on the Whole Word Morphology
theory. The model is an alternative to the widely used segmentation-oriented ap-
proaches. It employs a relational description of morphology, without attempting
to decompose words into smaller structural units. In this way, both concate-
native and non-concatenative morphological phenomena can be described in a
unified way. The underlying linguistic theory is minimalistic and the behaviour
of the model can be controlled by training data and prior distributions, which
makes it appliable for many languages and use cases. Contrary to many machine
learning approaches, the trained model, which consists of a lexicon and a set of
rules with assigned probabilities, is easily interpretable and can be edited by a
human expert.

The generative model contains broad knowledge, which can be attributed to
“morphological competence”. By manipulating its probability distributions, a
single trained model can be applied to various tasks, like for instance lemmatizing
unknown words, producing inflected forms, or anticipating unknown vocabulary.
It is also flexible with respect to the data employed in solving those tasks: features
like PoS-tag and word frequency (and possibly others) are optional, as well as
labeled training data.

In addition to its machine learning capabilities, the model could perhaps also
contribute to empirical linguistic studies. The definition of “productivity” as the
probability of applying a rule, when the necessary conditions for applying it are
met, seems reasonable from a linguistic point of view. The model accounts for
phenomena like back-formation or analogy, the latter being justified in reducing
the number of rules and the preference of more productive rules over less produc-
tive. As the lexicon is a part of the model and its content affects the probabilities
assigned to words, the differences in morphological competence between various
speakers of a language could be modeled through the differences in the content
of their lexica, whereas the rules tend to be a property of the language and thus
same for every speaker.

References

1. S. R. Anderson. A-Morphous Morphology, volume 62 of Cambridge Studies in
Linguistics. Cambridge University Press, 1992.

2. M. Aronoff. Word Formation in Generative Grammar. The MIT Press, 1976.
3. T. Bocek, E. Hunt, and B. Stiller. Fast Similarity Search in Large Dictionaries.

Technical report, University of Zurich, 2007.
4. S. Brants, S. Dipper, P. Eisenberg, S. Hansen, E. König, W. Lezius, C. Rohrer,

G. Smith, and H. Uszkoreit. TIGER: Linguistic Interpretation of a German Corpus.
Journal of Language and Computation, 2:597–620, 2004.

5. B. Can. Statistical Models for Unsupervised Learning of Morphology and POS
Tagging. PhD thesis, University of York, 2011.

6. E. Chan. Learning Probabilistic Paradigms for Morphology. In Proceedings of the
Eighth Meeting of the ACL Special Interest Group on Computational Phonology at
HLT-NAACL, pages 69–78, 2006.

7. G. Chrupa la, G. Dinu, and J. van Genabith. Learning morphology with morfette.
In Proceedings of the 6th International Conference on Language Resources and
Evaluation, LREC ’08, pages 2362–2367, 2008.

8. G. Durrett and J. DeNero. Supervised Learning of Complete Morphological
Paradigms. In Proceedings of the 2013 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
pages 1185–1195, 2013.

9. A. Ford, R. Singh, and G. Martohardjono. Pace Pān. ini: Towards a word-based
theory of morphology. American University Studies. Series XIII, Linguistics, Vol.
34. Peter Lang Publishing, Incorporated, 1997.

10. H. Hammarström and L. Borin. Unsupervised Learning of Morphology. Compu-
tational Linguistics, 37(2):309–350, 2011.

11. M. Janicki. Unsupervised Learning of A-Morphous Inflection with Graph Clus-
tering. In Proceedings of the Student Research Workshop associated with RANLP
2013, pages 93–99, Hissar, Bulgaria, 2013.

12. A. Kirschenbaum. Unsupervised Segmentation for Different Types of Morphologi-
cal Processes Using Multiple Sequence Alignment. In 1st International Conference
on Statistical Language and Speech Processing, SLSP, pages 152–163, Tarragona,
Spain, 2013.

13. M. Kurimo, S. Virpioja, V. Turunen, and K. Lagus. Morpho Challenge 2005-
2010: Evaluations and results. In Proceedings of the 11th Meeting of the ACL-
SIGMORPHON, ACL 2010, pages 87–95, July 2010.

14. A. Mikheev. Automatic rule induction for unknown word guessing. Computational
Linguistics, 23:405–423, 1997.

15. S. Neuvel and S. A. Fulop. Unsupervised Learning of Morphology without Mor-
phemes. In Proceedings of the 6th Workshop of the ACL Special Interest Group in
Computational Phonology (SIGPHON), pages 31–40, 2002.

16. H. Poon, C. Cherry, and K. Toutanova. Unsupervised morphological segmenta-
tion with log-linear models. In Proceedings of Human Language Technologies The
2009 Annual Conference of the North American Chapter of the Association for
Computational Linguistics on NAACL 09, pages 209–217, 2009.

17. A. Przepiórkowski. The IPI PAN Corpus: Preliminary version. Institute of Com-
puter Science, Polish Academy of Sciences, Warsaw, 2004.

18. M. S. Rasooli, T. Lippincott, N. Habash, and O. Rambow. Unsupervised
Morphology-Based Vocabulary Expansion. In ACL, pages 1349–1359, 2014.

19. T. Ruokolainen, O. Kohonen, S. Virpioja, and M. Kurimo. Supervised Morpholog-
ical Segmentation in a Low-Resource Learning Setting using Conditional Random
Fields. In Proceedings of the Seventeenth Conference on Computational Natural
Language Learning (CoNLL), pages 29–37, Sofia, Bulgaria, 2013.

20. R. Samdani, M.-W. Chang, and D. Roth. Unified Expectation Maximization. In
2012 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 688–698, 2012.

21. R. E. Tarjan. Finding optimum branchings. Networks, 7:25–35, 1977.
22. H. Tseng, D. Jurafsky, and C. Manning. Morphological features help POS tagging

of unknown words across language varieties. In Proceedings of the Fourth SIGHAN
Workshop on Chinese Language Processing, pages 32–39, 2005.

23. S. Virpioja, P. Smit, S.-A. Grönroos, and M. Kurimo. Morfessor 2.0: Python
Implementation and Extensions for Morfessor Baseline. Technical report, Aalto
University, Helsinki, 2013.

24. R. A. Wagner and M. J. Fischer. The String-to-String Correction Problem. Journal
of the ACM, 21(1):168–173, 1974.

25. R. H. Wicentowski. Modeling and Learning Multilingual Inflectional Morphology in
a Minimally Supervised Framework. PhD thesis, Johns Hopkins University, 2002.

26. D. Yarowsky and R. Wicentowski. Minimally Supervised Morphological Analysis
by Multimodal Alignment. In ACL ’00, pages 207–216, 2000.

27. A. Zielinski and C. Simon. Morphisto – An Open Source Morphological Ana-
lyzer for German. In Finite-State Methods and Natural Language Processing, 7th
International Workshop, FSMNLP 2008, pages 224–231, Ispra, Italy, 2008.

