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Abstract. We present ExB Medical Text Miner – a text mining pipeline
for processing biomedical documents. This application employs state-
of-the-art Named Entity Recognition, using linguistic features and word
embeddings in a fully-connected second-order Conditional Random Field
model, as well as a novel two-stage Relation Extraction module that first
detects entity-level relations using a Support Vector Classifier, then iden-
tifies document-level relations by measuring their relevance according to
a document topic classification model.
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1 Introduction

A major motivator for research into text mining in the biomedical domain is
to provide a cost-effective way of working with information present in natural
language texts about chemicals, diseases, genes and their interactions. The heavy
use of domain-specific terms in biomedical documents, and the complexity of the
relations between them, makes this a challenging field for research.

This year’s BioCreative V Task 3 focuses on these challenges with two sub-
tasks: Disease NER and Normalization (DNER), and Chemical-induced Diseases
RE (CID). In this paper we present ExB’s NLP processing and text mining sys-
tem as adapted to the biomedical domain. First, we describe our preprocessing
pipeline (Section 2), and our approach to NER (Section 3) and RE (Section 4).
Finally, we present the results our current system achieves on the official Task 3
test data set (Section 5).

2 Corpora and Preprocessing

To train the ExB Medical Text Miner, both for NER and RE, we used the
official training (CDR Train) and development set (CDR Devel) of BioCreative
V: Track 3 - CDR1. For the detection of chemical names, we additionally used
the CHEMDNER Corpus from BioCreative IV: Track 2 - CHEMDNER2. The

1 http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/
2 http://www.biocreative.org/tasks/biocreative-iv/chemdner/
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ExB Medical Text Miner also uses features like unsupervised POS tags and word
embeddings produced using models trained with the PubMed Corpus3.

We preprocess documents using an NLP pipeline that comprises:

– Tokenization, with rules adapted from the ones described for Model 1 in [10].
– Stop-word detection, using in-house tools.
– Sentence boundary detection, using in-house tools.
– Unsupervised POS tagging, based on SVD2 [9].
– Supervised POS tagging, using the Stanford Maximum Entropy tagger4 [14].
– Lemmatization, using Stanford CoreNLP5 [11].
– Measurement detection (e.g. 55.8 g/mol or 10 mg), using an in-house tool.
– Negation detection with scope, using NegEx6 [3].
– Syntactic structures, using the Stanford Parser7 [4].

3 Named Entity Recognition and Normalization

3.1 Feature Extraction

We performed NER using ExB’s existing NER ensemble framework [8], but
extended it with new features specifically targeting biomedical applications. We
drew heavily on [10] for new features oriented towards biomedical tasks.

Feature extraction for a given token uses information about the token it-
self and a context window of ±3 tokens. Features extracted include plain token
strings, supervised and unsupervised POS tags, semantic clusters as described
in [7], word shape features as described in [1] and [6], word embeddings (at 150
dimensions) computed by word2vec8[12] and word embeddings of syntactically
dependent words. In addition, we extract binary features identifying chemical
formulas, Roman numerals, Greek characters, as well as amino acids and nucle-
obases from a fixed list. For a given token, we also extract character n-grams up
to length 5, including delimiters for the start and end of each token.

3.2 Classification

Recent work in biomedical NER [10] suggests that using second-order Condi-
tional Random Fields (CRFs) achieves superior results in biomedical domains,
so we decided to integrate two new CRF libraries into our existing NER ensemble
framework:

– CRFSuite, a fast library for first-order CRFs [13].
– ExBCRF, our own CRF implementation inspired by CRFSuite, but adding

support for second-order CRFs, transitions from all previous and all subse-
quent labels to the current label (symmetric, fully connected), and automatic
restarts using different random seeds.

3 http://www.ncbi.nlm.nih.gov/pubmed/
4 http://nlp.stanford.edu/software/tagger.shtml
5 http://nlp.stanford.edu/software/corenlp.shtml
6 http://code.google.com/p/negex/
7 http://nlp.stanford.edu/software/lex-parser.shtml
8 https://code.google.com/p/word2vec/
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In addition to CRF components, we evaluated word lists of chemicals and
diseases as a part of the NER ensemble. These word lists were extracted from the
MeSH thesaurus9, then applied to the CDR Train data, and words which were
over-proposed (i.e. words used more frequently in the data with meanings other
than as diseases and chemicals) were dropped. We discovered that integrating the
resulting disease name list into our ensemble architecture improves our results,
but the chemical name list led to a drop in performance.

3.3 Normalization

Named Entity (NE) normalization maps tokens to MeSH thesaurus ID numbers.
Where a term in the training data is unambiguously associated with just

one ID, we store the term in a dictionary. If the term contains a conjunction
(i.e. and), we store both parts of the conjunction if they are unambiguously
associated with a single ID.

We also use the MeSH thesaurus to learn common variations on terms, for
example that antibody and antibodies refer to the same MeSH ID code, therefore
if we find surgeries we should identify it with the same ID as surgery. We train
this system by checking the frequencies of transformed tokens in the CDR Train
and CDR Devel corpora, and keep the most significant transformations.

During the normalization process, we look up tokens in the dictionary, getting
a MeSH ID directly from there if possible. If not, we test various transformations
of the token, acquiring for each one a set of possible MeSH IDs. This is then
filtered based on the frequency of terms corresponding to each MeSH ID in the
CDR Train and CDR Devel corpora. We also assess the specificity of each term
based on its place in the MeSH thesaurus subject ontology, and select more
specific terms over less specific ones whenever possible.

4 Chemical-induced Diseases RE

Chemical-induced Diseases (CID) relations are binary associations between nor-
malized NEs for diseases and for chemicals. We view their extraction as a two
part task: identifying relations between diseases and chemicals in texts, and
classifying them by their relevance to the documents they are in.

4.1 Entity-level RE

The official training data for this task does not provide entity-level relations for
its texts, therefore we used two strategies to obtain disease-chemical entity pairs
from texts:

First, we used a simple unsupervised strategy in which every NE identified
as a disease in a given document is associated with every NE identified as a
chemical. Those CID pairs that match gold standard document-level relations
are treated as positive examples of entity-level relations for training, and the
others as negative.

9 US National Library of Medicine Subject Headings: http://www.nlm.nih.gov/

mesh/
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Secondly, we manually annotated the training data for disease and chemical
NEs that participate in gold standard document-level CID pairs.

We then trained a Support Vector Classifier using a linear feature kernel to
recognize these entity-level relation pairs. We note that others have had success in
similar tasks using different kernel types and feature sets derived from syntactic
parses (e.g. Bio Event Extraction [2], Drug-Drug-Interaction [5]). However, in
our experiments with different learning strategies, we had the most success with
a linear kernel. Furthermore, syntactic feature sets do not extend to relations
that cross sentence boundaries. Our approach has the benefit of using the same
procedures to find intra- and cross-sentence relation pairs.

We extracted the features used for training from each NE participating in an
entity-level candidate pair, as well as from a context window that includes all
the words between the two NEs and ±2 tokens around each NE. We included
standard features like plain token strings, lemmas, supervised and unsupervised
POS tags for the tokens in each NE and in their immediate context. We also
used information about the number of NEs of various types (like disease NEs,
or chemical NEs) and the number of measurement phrases (e.g. 55.8 g/mol or
10 mg) observed in the context of an entity-level pair.

A binary feature indicates whether the entity-level candidate pair falls in
whole or part within the scope of a negation. We also extract syntactic features,
such as embeddings of dependency-linked tokens, dependency paths between
entities and the length of dependency paths between participating NEs. For
cross-sentence CID pairs, we automatically extract special cross-sentence pat-
terns (pairs of token sequences from both entities’ context), because dependency
paths between both entities are not available.

The performance of supervised and unsupervised strategies are compared in
Table 1. Subtask CID, Run 1 corresponds to the supervised candidate entity-
level relation selection condition, while Run 2 corresponds to the unsupervised
candidate selection.

4.2 Document-level RE

In general, when a candidate entity-level relation pair is semantically unrelated
to the main topic of its document, it does not match a gold standard CID relation
in the training data. Consequently, we can quickly remove many candidates by
filtering out the topically irrelevant ones.

We trained a document topic classification model to identify both chemicals
and diseases that are topically important to a text. For each chemical or disease
found this way, we extract a number of features to predict whether or not it will
occur in a document-level relation.

Features are extracted at each NE in the document corresponding to that
chemical or disease, including plain token strings and sequences of tokens within
a ±4 token window, bags of words within a ±10 token window (up to sentence
boundaries), what part of the document the NE appears in (e.g. title, first sen-
tence of abstract, last sentence of abstract), whether it is first NE of its type in
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the text, whether measurement phrases are near it, and the frequency of NEs
matching that chemical or disease.

Finally, we identify entity-level CID relations as document-level relations if:

– the entity-level CID relation is the only candidate related to the document’s
main topics,

– or it appears at least twice in the document,
– or both NEs participating in the CID relation are related to the document’s

main topics,
– or no other entity-level relation satisfies any of the above conditions.10

5 Results

For our participation in BioCreative V Track 3, we set up three “runs” for each of
the subtasks, measuring the relative success of each variation in our procedure.
All models were trained on both the CDR Train and CDR Devel corpora.

Subtask Run Description P (%) R (%) F (%)

DNER

1 CRFSuite, without dependency embeddings 90.37 80.28 85.03
2 ExBCRF, with dependency embeddings 90.53 80.78 85.38
3 ExBCRF, without dependency embeddings 90.92 80.13 85.19

Official baseline 42.71 67.46 52.30

CID

1 Entity-level relations, no dependency features 50.65 47.47 49.01
2 Document-level relations, no dependency features 46.73 48.97 47.82
3 Entity-level relations, dependency features 48.61 47.47 48.03

Official baseline 16.43 76.45 27.05

Table 1. Run definitions and results on official test data for both subtasks

First, we note that for the DNER task (Subtask DNER in Table 1), our
in-house CRF implementation ExBCRF slightly outperforms CRFSuite using
identical feature sets (Runs 1 & 3 ). This difference is even greater when com-
paring the number of correct NE appearances identified rather than the dis-
ambiguated MeSH ID codes: an improvement of +1.2% on CDR Devel when
trained using CDR Train. Adding dependency embedding features increases the
F-score performance by another 0.19% (Run 2 ).

For the CID task (Subtask CID in Table 1), training on entity-level relations
(Run 1 ) significantly increases the predictive power of our model (+1.19% in
F-score when compared to Run 2 ). Surprisingly, our model with dependency
features (Run 3 ) performs worse than without dependency features (−0.98%).
We suspect that this is a consequence of parser errors due to atypical construc-
tions common to biomedical scientific literature (e.g. terms like chemical-induced
disease) that the Stanford parser does not handle correctly.

10 This last condition makes sense only because we know in advance that there is at
least one document-level CID relation for every document. Therefore, any relation
found in the text is a better guess than no answer at all.
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6 Conclusion

We have successfully adapted ExB’s NLP processing and text mining system to
the biomedical domain and shown its effectiveness on the BioCreative CID task.
ExB Medical Text Miner achieves state-of-the-art results and placed 4th out of
16 teams in subtask DNER. Document-level RE is a relatively new area in NLP,
and with F-scores near 50%, we finished 6th out of 18 teams. Despite not using
additional knowledge bases the state-of-the-art results show that our approach
generalizes well in resource-scarce situations.
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