Session4
Christian Kahmann

12 10 2020

This exercise will demonstrate how to perform co-occurrence analysis with R and the quanteda-package. It
is shown how different significance measures can be used to extract semantic links between words.

Change to your working directory, create a new R script, load the quanteda-package and define a few already
known default variables.

options(stringsAsFactors = FALSE)
library(quanteda)

textdata <- read.csv('"data/sotu.csv", sep = ";", encoding = "UTF-8")

sotu_corpus <- corpus(textdata$text, docnames = textdata$doc_id, docvars = data.frame(year = substr(tex

Sentence detection

The separation of the text into semantic analysis units is important for co-occurrence analysis. Context
windows can be for instance documents, paragraphs or sentences or neighboring words. One of the most
frequently used context window is the sentence.

Documents are decomposed into sentences. Sentences are defined as a separate (quasi-)documents in a new
corpus object of the quanteda-package. The further application of the quanteda-package functions remains
the same. In contrast to previous exercises, however, we now use sentences which are stored as individual
documents in the body.

Important: The sentence segmentation must take place before the other preprocessing steps because the
sentence-segmentation-model relies on intact word forms and punctuation marks.

The following code uses a quanteda function to reshape the corpus into sentences.

original corpus length and tts first document
ndoc (sotu_corpus)

[1] 233
substr (texts(sotu_corpus) [1], 0, 200)

##
"Fellow-Citizens of the Senate and House of Representatives:\n\nI embrace with great satisfaction th

corpus_sentences <- corpus_reshape(sotu_corpus, to = "sentences")
ndoc (corpus_sentences)

[1] 62735

texts(corpus_sentences) [1]

##
"Fellow-Citizens of the Senate and House of Representatives: I embrace with great satisfaction the

texts(corpus_sentences) [2]

##
"The recent accession of the important state of North Carolina to the Constitution of the United Sta

CAUTION: The newly decomposed corpus has now reached a considerable size of 62735 sentences. Older
computers may get in trouble because of insufficient memory during this preprocessing step.

Now we are returning to our usual pre-processing chain and apply it on the separated sentences.

Build a dictionary of lemmas
lemma_data <- read.csv('"resources/baseform_en.tsv", encoding = "UTF-8")

read an extended stop word list
stopwords_extended <- readLines("resources/stopwords_en.txt", encoding = "UTF-8")

Preprocessing of the corpus of sentences

corpus_tokens <- corpus_sentences >/
tokens (remove_punct = TRUE, remove_numbers = TRUE, remove_symbols
tokens_tolower() %>%
tokens_replace(lemma_data$inflected_form, lemma_data$lemma) %>%
tokens_remove(pattern = stopwords_extended, padding = T)

TRUE) %>%

calculate multi-word unit candidates
sotu_collocations <- textstat_collocations(corpus_tokens, min_count = 25)
sotu_collocations <- sotu_collocations[1:250,]

corpus_tokens <- tokens_compound(corpus_tokens, sotu_collocations)

Again, we create a document-term-matrix. Only word forms which occur at least 10 times should be taken
into account. An upper limit is not set (Inf = infinite).

Additionally, we are interested in the joint occurrence of words in a sentence. For this, we do not need the
exact count of how often the terms occur, but only the information whether they occur together or not. This
can be encoded in a binary document-term-matrix. The parameter weighting in the control options calls
the weightBin function. This writes a 1 into the DTM if the term is contained in a sentence and 0 if not.

minimumFrequency <- 10

Create DTM, prune vocabulary and set binary values for presence/absence of types
binDTM <- corpus_tokens %>/

tokens_remove("") %>%

dfm () %>%

dfm_trim(min_docfreq = minimumFrequency, max_docfreq = Inf) %>/

dfm_weight ("boolean")

Counting co-occurrences

The counting of the joint word occurrence is easily possible via a matrix multiplication (https://en.wikipedia.
org/wiki/Matrix_ multiplication) on the binary DTM. For this purpose, the transposed matrix (dimensions:
nTypes x nDocs) is multiplied by the original matrix (nDocs x nTypes), which as a result encodes a term-term
matrix (dimensions: nTypes x nTypes).

Matriz multiplication for cooccurrence counts
coocCounts <- t(binDTM) %#’% binDTM

https://en.wikipedia.org/wiki/Matrix_multiplication
https://en.wikipedia.org/wiki/Matrix_multiplication

Let’s look at a snippet of the result. The matrix has nTerms rows and columns and is symmetric. Each cell
contains the number of joint occurrences. In the diagonal, the frequencies of single occurrences of each term
are encoded.

as.matrix(coocCounts[202:205, 202:205])

distant post-office agree opinion
distant 163 1 0 0
post-office 1 38 0 0
agree 0 0 310 7
opinion 0 0 7 463

Interprete as follows: agree appears together 7 times with opinion in the 62735 sentences of the SUTO
addresses. agree alone occurs 310 times.

Statistical significance

In order to not only count joint occurrence we have to determine their significance. Different significance-
measures can be used. We need also various counts to calculate the significance of the joint occurrence of a
term i (coocTerm) with any other term j: * k - Number of all context units in the corpus * ki - Number
of occurrences of coocTerm * kj - Number of occurrences of comparison term j * kij - Number of joint
occurrences of coocTerm and j

These quantities can be calculated for any term coocTerm as follows:

coocTerm <- "spain"

k <- nrow(binDTM)

ki <- sum(binDTM[, coocTerm])
kj <- colSums(binDTM)

names (kj) <- colnames(binDTM)
kij <- coocCounts[coocTerm,]

An implementation in R for Mutual Information, Dice, and Log-Likelihood may look like this. At the end of
each formula, the result is sorted so that the most significant co-occurrences are at the first ranks of the list.

#Hnnnnnngn MI: log(k¥kig / (ki * kj) ########
mutualInformationSig <- log(k * kij / (ki * kj))
mutualInformationSig <- mutualInformationSig[order (mutualInformationSig, decreasing = TRUE)]

#HHnnnians DICE: 2 XY / X + Y #A#H#H#AHARIHHS
dicesig <- 2 * kij / (ki + kj)
dicesig <- dicesiglorder(dicesig, decreasing=TRUE)]

#iannnnnnad Log Likelthood #HARHHHHAHHHHAARIR]]

logsig <- 2 * ((k * log(k)) - (ki * log(ki)) - (kj * log(kj)) + (kij * log(kij))
+ (k - ki - kj + kij) * log(k - ki - kj + kij)
+ (ki - kij) * log(ki - kij) + (kj - kij) * log(kj - kij)
- (k - ki) * log(k - ki) - (k - kj) * log(k - kj))

logsig <- logsiglorder(logsig, decreasing=T)]

The result of the four variants for the statistical extraction of co-occurrence terms is shown in a data frame
below. It can be seen that frequency is a bad indicator of meaning constitution. Mutual information
emphasizes rather rare events in the data. Dice and Log-likelihood yield very well interpretable contexts.

Put all significance statistics in one Data-Frame
resultOverView <- data.frame(

names (sort(kij, decreasing=T)[1:10]), sort(kij, decreasing=T)[1:10],

names (mutualInformationSig[1:10]), mutualInformationSig[1:10],

names (dicesig[1:10]), dicesig[1:10],

names (logsig[1:10]), logsig[1:10],

row.names = NULL)
colnames (resultOverView) <- c("Freq-terms", "Freq", "MI-terms", "MI", "Dice-Terms", "Dice", "LL-Terms",
print (resultOverView)

Freq-terms Freq MI-terms MI Dice-Terms Dice LL-Terms
##H 1 spain 443 spain 4.953105 spain 1.00000000 cuba
2 unite_state 138 amistad 4.036814 cuba 0.14343708 unite_state
3 government 125 antilles 4.036814 spanish 0.10720268 spanish
4 treaty 59 madrid 3.894498 france 0.08396947 government
5 make 57 catholic 3.888394 island 0.07363184 treaty
6 cuba 53 queen 3.854493 colony 0.07342657 france
7 part 49 autonomy 3.566811 florida 0.07102804 claim
8 claim 47 cede 3.547762 madrid 0.06910569 madrid
9 war 46 adventurer 3.518020 claim 0.06690391 island
10 country 43 spoliations 3.412660 treaty 0.06455142 florida
LL
1 256.41958
2 246.25302
3 163.56468
4 124.90055
5 121.26782
6 116.24800
7 106.97307
8 106.23611
9 103.70626
10 96.31669

Visualization of co-occurrence

In the following, we create a network visualization of significant co-occurrences.

For this, we provide the calculation of the co-occurrence significance measures, which we have just introduced,
as single function in the file calculateCoocStatistics.R. This function can be imported into the current
R-Session with the source command.

Read in the source code for the co-occurrence calculation
source("resources/calculateCoocStatistics.R")

Definition of a parameter for the representation of the co-occurrences of a concept
number0fCoocs <- 15

Determination of the term of which co-competitors are to be measured.

coocTerm <- "california"

We use the imported function calculateCoocStatistics to calculate the co-occurrences for the target term
“california”.

coocs <- calculateCoocStatistics(coocTerm, binDTM, measure="LOGLIK")

Loading required package: Matrix

Display the numberOfCoocs main terms
print (coocs[1:number0fCoocs])

oregon mexico texas mineral upper territory
255.80430 157.75605 55.33600 54.42910 51.51606 47.32689

wisconsin arizona acquisition possession coast mine
#i# 42.65231 41.62182 40.58160 36.61559 36.00492 35.81907
grande york maine

35.73801 34.91599 33.77296

To acquire an extended semantic environment of the target term, ‘secondary co-occurrence’ terms can be
computed for each co-occurrence term of the target term. This results in a graph that can be visualized with
special layout algorithms (e.g. Force Directed Graph).

Network graphs can be evaluated and visualized in R with the igraph-package. Any graph object can be
created from a three-column data-frame. Each row in that data-frame is a triple. Each triple encodes an
edge-information of two nodes (source, sink) and an edge-weight value.

For a term co-occurrence network, each triple consists of the target word, a co-occurring word and the
significance of their joint occurrence. We denote the values with from, to, sig.

resultGraph <- data.frame(from = character(), to = character(), sig = numeric(0))

The process of gathering the network for the target term runs in two steps. First, we obtain all significant
co-occurrence terms for the target term. Second, we obtain all co-occurrences of the co-occurrence terms
from step one.

Intermediate results for each term are stored as temporary triples named tmpGraph. With the rbind command
(“row bind”, used for concatenation of data-frames) all tmpGraph are appended to the complete network
object stored in resultGraph.

The structure of the temporary graph object is equal to that of the resultGraph
tmpGraph <- data.frame(from = character(), to = character(), sig = numeric(0))

Fill the data. frame to produce the correct number of lines

tmpGraph [1:number0fCoocs, 3] <- coocs[1:number0fCoocs]

Entry of the search word into the first column in all lines

tmpGraph[, 1] <- coocTerm

Entry of the co-occurrences into the second column of the respective line
tmpGraph[, 2] <- names(coocs) [1:number0fCoocs]

Set the significances

tmpGraph[, 3] <- coocs[1:numberOfCoocs]

Attach the triples to resultGraph
resultGraph <- rbind(resultGraph, tmpGraph)

Iteration over the most significant numberUfCoocs co-occurrences of the search term
for (i in 1:number0fCoocs){

Calling up the co-occurrence calculation for term % from the search words co-occurrences
newCoocTerm <- names(coocs) [i]
coocs2 <- calculateCoocStatistics(newCoocTerm, binDTM, measure="LOGLIK")

#print the co-occurrences
coocs2[1:10]

Structure of the temporary graph object

tmpGraph <- data.frame(from = character(), to = character(), sig = numeric(0))
tmpGraph[1:number0fCoocs, 3] <- coocs2[1:number0fCoocs]

tmpGraph[, 1] <- newCoocTerm

tmpGraph[, 2] <- names(coocs2) [1:number0fCoocs]
tmpGraph[, 3] <- coocs2[1:number0fCoocs]

#Append the result to the result graph
resultGraph <- rbind(resultGraph, tmpGraph[2:length(tmpGraphl, 1]), 1)
}

As a result, resultGraph now contains all number0fCoocs * numberOfCoocs edges of a term co-occurrence
network.

Sample of some examples from resultGraph
resultGraph[sample (nrow(resultGraph), 6),]

from to sig
13 california grande 35.73801
1511 coast point 71.00712
146 territory jurisdiction 87.76087
28 arizona california 41.62182
811 coast west 98.87268
57 wisconsin kentucky 46.91602

The package iGraph offers multiple graph visualizations for graph objects. Graph objects can be created
from triple lists, such as those we just generated. In the next step we load the package iGraph and create a
visualization of all nodes and edges from the object resultGraph.

require(igraph)

Set the graph and type
graphNetwork <- graph.data.frame(resultGraph, directed = F)

Identification of all nodes with less than 2 edges
graphVs <- V(graphNetwork) [degree (graphNetwork) < 2]

These edges are removed from the graph

graphNetwork <- delete.vertices(graphNetwork, graphVs)

Assign colors to edges and nodes (searchterm blue, rest orange)
V(graphNetwork) $color <- ifelse(V(graphNetwork)$name == coocTerm, 'cornflowerblue', 'orange')

Edges with a significance of at least 50J of the mazimum sig- nificance in the graph are drawn in ora
halfMaxSig <- max(E(graphNetwork)$sig) * 0.5
E(graphNetwork) $color <- ifelse(E(graphNetwork)$sig > halfMaxSig, "coral", "azure3")

Disable edges with radius

E(graphNetwork) $curved <- 0

Size the nodes by their degree of metworking
V(graphNetwork) $size <- log(degree(graphNetwork)) * 5

All nodes must be assigned a standard minimum-size
V(graphNetwork) $size [V(graphNetwork) $size < 5] <- 3

edge thickness
E(graphNetwork) $width <- 2

Define the frame and spacing for the plot
par(mai=c(0,0,1,0))

Finaler Plot

plot(graphNetwork,
layout = layout.fruchterman.reingold, # Force Directed Layout
main = paste(coocTerm, ' Graph'),

vertex.label.family = "sans",

vertex.label.cex = 0.8,

vertex.shape = "circle",

vertex.label.dist = 0.5, # Labels of the nodes moved slightly
vertex.frame.color = 'darkolivegreen',

vertex.label.color = 'black', # Color of mode names
vertex.label.font = 2, # Font of mode names

vertex.label = V(graphNetwork)$name, # node names

vertex.label.cex = 1 # font size of nmode names

california Graph

republic
goveénment ¥
ation
|sgnd . b ary m@can mgces
Iat&ude E j
ag:auire
r’Brth
gulf
\)
@l’ it stbrvey
te@rial
west
m@ouri
i8/va
kentucky
IB ti@ber
ennsylvania Virginia
P 81 @ fcasest

massgghusetts riaﬁ)de mint

Optional exercises

1. Create term networks for “civil”, “germany”, “tax”

2. For visualization, at one point we filter for all nodes with less than 2 edges. By this, the network plot gets

less dense, but we loose also a lot of co-occurring terms connected only to one term. Re-draw the network

california Graph

5’%5 ISig'Ei ncil
L
re; urce&“@"‘“ lland
precmé&g;ﬁéql 8 g
fa&to Egj&g)very

ry_line

timber ngrth grea bri
nt‘%rship l@?ﬂest . ¢ F%&y
! . BsHm!nssquent
'§1§” purchase

loujsia

micnigan m.®ouri
6“0%1 9

m'”&%’? I compromisestate unitenstafdMEAH!
1] a
b m&}? aga"a“d’l@m 87“‘@0”5 @' m

s piRshington indiar” teitgrial @ ‘%@%@Wsz:r
mas? S augusimbia g)ulf %"qﬁgmn a\c‘f)’ﬁﬁw
de@wgﬁ "nﬂwl%mion _%tern
orlsalgamer west surveﬁ%@smn Tiyer
B ara harbor ‘
chga&g 6 a
d
%I%&augean int Sgt L‘?r:b ataam

B Zﬁ%ﬁgg ;ﬁl dogg?r%s;;?q;ﬁatlon
without this filtering.

The plot may get very messy. Try lower values for number0fCoocs to create a less dense network plot.

. Separate the DTM into two time periods (year < 1950; year > = 1950). Represent the graphs

for the term “california” for both time periods. Hint: Define functions for the sub processes
of creating a binary DTM from a corpus object (get_binDTM <- function(mycorpus)) and
for visualizing a co-occurrence network (vis_cooc_network <- function(binDTM, coocTerm)).

California (year < 1950)

misouri

csast
.er wth Iaﬁude
indian Wl.lswiﬁc
*te

) s‘rn W§tern
e
Iﬁse ‘ \.n uaion
y -

st ion qe
ftxest 'e a
ry
‘al Q tate '
region a"ma nugces
itorial
Kch tewna “ jon \m"can
hnd i*nd

annexation &°

purahase

California (year >= 1950)

ter
nd
conserf/atiol preserve
femly reawation b iful
€ reover "
ull @
vigo‘ously 8
nonhern \“est

. e s@red

t@‘asiniular . A
. rescue
s{atus 8

po‘tical
asp'aation

Iom‘ana

agri%lltural
indﬁfinite
/A dg’nk h@vaii
ck K CWna
e L gk

10

	Sentence detection
	Counting co-occurrences
	Statistical significance
	Visualization of co-occurrence
	Optional exercises

